
The Photogrammetric Record 33(163): 315–340 (September 2018)
DOI: 10.1111/phor.12247

SCALABLE INDIVIDUAL TREE DELINEATION
IN 3D POINT CLOUDS

Jinhu WANG* (jinhu.wang@tudelft.nl)
Roderik LINDENBERGH (r.c.lindenbergh@tudelft.nl)

Massimo MENENTI (m.menenti@tudelft.nl)

Delft University of Technology, Delft, The Netherlands

*Corresponding author

Abstract

Manually monitoring and documenting trees is labour intensive. Lidar
provides a possible solution for automatic tree-inventory generation. Existing
approaches for segmenting trees from original point cloud data lack scalable and
efficient methods that separate individual trees sampled by different laser-scanning
systems with sufficient quality under all circumstances. In this study a new
algorithm for efficient individual tree delineation from lidar point clouds is
presented and validated. The proposed algorithm first resamples the points using
cuboid (modified voxel) cells. Consecutively connected cells are accumulated by
vertically traversing cell layers. Trees in close proximity are identified, based on a
novel cell-adjacency analysis. The scalable performance of this algorithm is
validated on airborne, mobile and terrestrial laser-scanning point clouds.
Validation against ground truth demonstrates an improvement from 89% to 94%
relative to a state-of-the-art method while computation time is similar.

Keywords: cuboid, individual tree delineation, laser scanning, point cloud, 3D
clustering, tree, voxel

Introduction

TREES PLAY AN INDISPENSABLE ROLE in the urban environment and tree management is of great
interest for biomass estimation and monitoring environmental changes (Cottone and Ettl,
2001; Zheng et al., 2007; van Deusen, 2010; Moskal and Zheng, 2012). Traditionally, trees
are manually measured in situ, which is time-consuming, costly and susceptible to
subjective errors. Besides, adverse site conditions can make access difficult (Hopkinson
et al., 2004).

Lidar has become a well-established surveying technique for the acquisition of
geospatial information (Vosselman and Maas, 2010). Combined with automatic point cloud
processing techniques, this in principle enables the efficient extraction of geometric tree
parameters. In recent years, many studies have investigated the application of lidar
implemented in airborne laser scanning (ALS), mobile laser scanning (MLS) and terrestrial
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laser scanning (TLS), for tree and forest applications. A typical processing workflow based
on registered point clouds consists of three steps: (i) separate tree points from non-tree
points; (ii) identify individual trees among all tree points; and (iii) estimate parameters
describing individual tree geometry.

Nowadays, large-scale urban tree inventories call for flexible and efficient methods to
segment tree points from raw point clouds. Many algorithms have been developed for
detecting and classifying trees from point clouds captured by different sensors. A
conventional method is first to segment non-terrain points and then extract all tree points
based on the height distribution of the points (Kraus and Pfeifer, 1998; Axelsson, 2000;
Sithole and Vosselman, 2004; McDaniel et al., 2012). This methodology is robust and both
digital elevation models (DEMs) and digital surface models (DSMs) can be generated in
parallel. Other approaches are region growing (Pauling et al., 2009; Aijazi et al., 2013),
feature-based tree classification (Rutzinger et al., 2010; Strom et al., 2010; Yang and Dong,
2013; Lin et al., 2014) and canopy model-fitting (Lahivaara et al., 2014). With the
availability of small-footprint full-waveform lidar systems, algorithms such as those in Guo
et al. (2011), Vaughn et al. (2012) and Lindberg et al. (2014) have been proposed to exploit
the waveform features of the back-scattered wave to classify tree points. Different sensors
can be integrated onto the same platform (Fieber et al., 2013). For example, hyperspectral
and multispectral images were integrated into the classification and extraction of trees by
Puttonen et al. (2011). There are also numerous methods available to extract tree points
from MLS and TLS point clouds (Rutzinger et al., 2011; Yang et al., 2012; Zhong et al.,
2013; Sirmacek and Lindenbergh, 2015; Wang et al., 2015).

Individual tree delineation, the second step in the processing chain, aims at separating
individual trees from the segmented tree points. Since this is the primary focus of this work,
existing methods will be discussed in more detail below. Tree delineation has been studied
in fields such as computer graphics, forestry and remote sensing for various purposes. Tree
parameters have been extracted and models of trees reconstructed from ALS point clouds
(Vosselman et al., 2004). Based on TLS point clouds, forest geometry has been
reconstructed for canopy radiative transfer models (Bremer et al., 2015). An automated
workflow has been presented to extract 3D tree models from MLS point clouds by
Rutzinger et al. (2011). An octree-based space-division procedure was introduced to extract
tree skeletons by Bucksch and Lindenbergh (2008). Tang et al. (2013) proposed an
algorithm to reconstruct the 3D surface of tree canopies from lidar point clouds. The
method first obtains a stack of separated slices corresponding to different height levels; then
the acquired boundaries are combined to form canopies of individual trees. However, these
methods are either: (i) not scalable and are computationally expensive; or (ii) consider point
clouds obtained from only one type of sensor. The algorithm proposed in this work is able
to deal with different situations and is demonstrated to work in several case studies
involving data from ALS, MLS and TLS systems including challenging scenarios, such as
separation of trees on steep terrain.

This paper is structured as follows. Firstly, existing methods of tree separation in ALS,
MLS and TLS point clouds are discussed. Next, the newly proposed algorithm for
individual tree delineation is presented. Then, the results and evaluation of the algorithm are
presented. Finally, concluding remarks and recommendations are made.

Related Work and Proposed Innovations

Existing methods used for individual tree delineation are categorised into two classes:
(1) point-based approaches; and (2) cuboid- or voxel-based approaches. The first class deals
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with all tree points while the latter considers cuboid (volumetric) cells containing points. A
detailed review of the two approaches is given below.

Point-based Approaches

Many available algorithms have already proved their feasibility to identify individual
(single) trees and estimate their parameters from ALS, MLS and TLS point cloud data.
Solberg et al. (2006) presented a method that first generated a canopy surface model from
an ALS point cloud. Then, based on this surface model, single trees were segmented and
characterised. Based on the vertical distribution of the ALS point clouds, shapes of spruce
and pine trees were constructed to individualise and discriminate these two types of tree. In
addition, tree positions and the height and crown diameter of individual trees were estimated
(Persson et al., 2002; Holmgren and Persson, 2004). Hyypp€a et al. (2001) proposed building
a terrain model and a canopy model and then, from these, generating a 3D tree-height
model. Based on this tree-height model, individual trees were extracted and parameters,
such as tree height, crown area and stem diameter, were derived. Rahman et al. (2009)
identified local maxima in 2D point densities to distinguish tree canopies from surrounding
objects; trees were then delineated based on the obtained maxima.

Rutzinger et al. (2010) introduced an alpha-shape approach for point cloud reduction;
tree models were generated consisting of a tree crown and a realistic trunk. The alpha-shape
concept is a generalisation of the convex hull and is able to describe the shape of point
entities, but requires tuning via the alpha parameter (Edelsbrunner et al., 1983). The
accuracy of tree detection was 85%. Although this method reduced the volume of the point
cloud data and partly preserved the geometry of trees, it introduced an extra step (to
determine the alpha shape) which also affects its computational efficiency.

Li et al. (2012) presented a new region-growing method to segment individual trees
from ALS point clouds by taking advantage of the open space between trees. The method
segmented 94% of trees in the study correctly but was only tested on sparse discrete ALS
point clouds; open space between trees is not always available, especially not in dense
mixed forests. Vega et al. (2014) proposed an algorithm to segment single trees by
analysing local maxima among the k nearest-neighbour points of a query point in 3D space.
Points were processed from highest to lowest height and assigned to corresponding tree
segments. This algorithm was tested on three different forest types, with 82% of trees being
successfully detected. Duncanson et al. (2014) presented a method to delineate multi-layered
crowns for assessing individual tree structure using a watershed-based canopy height model.
The method could identify 70% of dominant trees and was able to determine tree
parameters such as tree height, crown radius and crown area. Lu et al. (2014) developed a
bottom-up approach to segment individual deciduous trees sampled when in leaf (so-called
leaf-on, as opposed to leaf-off after shedding of leaves). Both lidar intensity and 3D
structure were used in the segmentation. The approach was tested on a forest and correctly
detected 84% of trees and correctly segmented 97% of them.

Raumonen et al. (2015) presented a massive-scale tree-modelling method for point
clouds from TLS. This method takes tree points as input. Consecutive voxel partitioning is
used to structure points and to modify regions of different point density. Next, tree stems
are located by horizontally slicing the tree points. Finally, the remaining points are classified
as either trees or non-trees. This method was tested on two plots of trees, consisting of
English oak and Australian eucalyptus. The biomass overestimation rates were 17% and
8�5% for the two plots, respectively. The presented method is also able to determine tree
diameters at breast height; in this case, the classification step is performed point by point.
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Cuboid and Voxel Approaches

One way to speed up point cloud processing is to consider voxels rather than
individual points. Wang et al. (2008) presented a voxel-based procedure to analyse vertical
canopy structure and to obtain 3D models of single trees sampled by ALS. The algorithm
first resampled the input point cloud to voxels and a series of horizontal 2D projected
images at different height levels were generated in voxel space. Then the main tree-canopy
layer and the height ranges of the layers were detected according to a statistical analysis of
the height distribution of the normalised raw point clouds. Compared to point-based
methods, this approach improved on efficiency, but did not consider the relationship
between voxel cells. Bienert et al. (2010) introduced a voxel-based method to analyse wind-
field models of a TLS forest scenario. The stems of trees were automatically detected
before the 3D point cloud was translated into a voxel structure representing the forest.
Then voxels were clustered using region growing and finally individual trees were
interpreted.

Several algorithms that process point clouds using voxels have, however, not
considered trees. Papon et al. (2013) presented a region-growing algorithm for point cloud
segmentation. In this study, first a point cloud was segmented using the relationship
between voxels. Next, the segmented results were merged to ensure consistency with the
spatial geometry of the scene. However, the algorithm was only tested on indoor objects
scanned by a TLS. Aijazi et al. (2013) presented a method to classify 3D urban MLS point
clouds based on voxels, but again trees were not studied.

Other studies have included trees in straightforward situations. Cabo et al. (2014)
detected pole-like objects from MLS point clouds using cuboid-based methods. The
technique first simplified the imported huge high-density MLS point cloud by a regular
voxelisation. Then, by assessing the local morphology of voxel cells, trees could be
classified and individualised. Nevertheless, the considered street trees were mainly of the
same size and did not overlap much. Babahajiani et al. (2015) presented an automated
method to classify urban environments based on supervoxels. In this study, buildings, roads,
trees and cars were successfully classified. However, delineation of overlapping trees was
not studied. Wu et al. (2013) presented a voxel-based method to detect street trees from
MLS point clouds. This method was able to extract single trees in a street scenario.
However, this method focused on MLS scanned point cloud data; separating trees in ALS
and TLS point clouds was not yet considered. This method searched for trees starting from
the bottom layer of a 3D grid; therefore, it was unable to detect multiple-stemmed trees or
trees that had their trunk occluded. Notably, this method shows its feasibility in separating
street trees of comparable size which are located along a road and connected mainly in the
road direction. However, urban trees which vary in size or were overlapping in different
directions were not yet evaluated. This method employed an incremental competing region-
growing algorithm proposed in Liu et al. (2006) to separate touching tree crowns. The
strategy took the relative distance to tree centres into consideration rather than the actual
connections between voxel cells. This introduced separation errors in cases where a larger
tree touched a smaller one, as outer points of the bigger tree would be wrongly assigned to
the smaller tree.

Proposed Innovations

The proposed cuboid-based individual tree delineation algorithm in this paper is
different from the previously mentioned methods with respect to the following points:
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(1) Assignment of cuboid cells to individual trees is based on a novel adjacency analysis,
which improves the separation of trees of different size.

(2) In the resampling step, the size of the cuboid cell is different in the three Cartesian
coordinate axes directions. Therefore, the term cuboids is used rather than voxels. The
use of cuboids (rather than voxel cubes) makes the algorithm more flexible.

(3) A 3D clustering step groups non-empty cuboids and immediately separates non-
connected components. This allows the algorithm to work efficiently.

(4) Individual tree delineation is performed both in a bottom-to-top and top-to-bottom
scheme, which makes the algorithm more robust.

Methodology

The methodology presented in this paper consists of five steps:

(1) A preprocessing step classifies tree points from the raw point cloud. The tree points
will be imported as input for the next steps.

(2) Resampling and clustering, which resamples the imported tree points to cuboid cells
and clusters incident cuboid cells in 3D space.

(3) Seed selection over all the clustered cells.
(4) Individualise (separate) trees.
(5) Evaluate the overall individual tree delineation quality with respect to manually

individualised trees as ground truth data.

Step 1: Preprocessing

In the first step, tree points are classified and segmented from the original raw imported
point cloud. Since this is not the focus of this work, this step is achieved with existing
methods. In this work, tree points are obtained in two steps. First, the imported raw point
cloud is classified into ground and non-ground points by implementing the algorithm
presented by Kraus and Pfeifer (1998). Next, tree points are extracted from the non-ground
points using the methodology in Sirmacek and Lindenbergh (2015). This algorithm first
generates 2D horizontal grids and then projects points onto each of the 2D grid cells. The
point density of each grid cell is then obtained. Consecutively, by determining the local
maxima of the 2D grid cells, the location of a tree is determined and the tree diameter is
estimated. Finally, tree points are extracted based on their proximity to these tree locations.

Step 2: Resampling and Clustering

Resampling a point cloud in this work means gathering its points into cuboidal cells.
The cell designed for the proposed algorithm is a cuboid rather than the standard cube
voxel (where the three sides are of equal length). Cuboid cells have different edge lengths
Wx, Wy and Wz in the three coordinate directions (Fig. 1) to improve flexibility. The non-
empty cells in green are defined as positive cells, in contrast to empty zero cells.

To save computation time and deal with trees that have large height differences,
connected cells are clustered after point cloud resampling. In this study, a 3D seed filling
algorithm from Yu et al. (2010) is employed to perform the clustering on all positive cells
before individual tree delineation. First, all positive cells are labelled as non-visited. Then,
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for the current cell, its 26 3D neighbouring cells are obtained. All positive neighbours, that
are non-visited, are pushed into a cluster stack. This step is performed recursively until all
positive cells are traversed. The output of this step is connected cells, which are represented
as clusters. In this step, all the cells are traversed only once. Thus, the computational
complexity of this step is linear in the number of cells, which is O(N) in asymptotic
notation (Cormen et al., 2001), if there are N cells.

Step 3: Select Seed Cells

The separation of the clustered tree cells into individual trees starts with seed cell
identification. A seed will potentially result in one individual tree after separation. The
procedure of separation from the bottom layer upwards is similar to the separation from the
top layer downwards. The only difference lies in seed inheritance. In the downwards
direction, the label of a cuboid is transferred to its neighbouring bottom-face cuboid. When
traversing in the upwards direction, the label is transferred to its upper-face neighbour. This
section will only describe the methodology in detail for the top layer downwards. First, a
cell is defined as a top cell if and only if this cell has a bottom-face neighbour but has no
top-face neighbouring cell. The bottom-face neighbour to a cell is the cell that connects to
the bottom face of the query cell. For example, in Fig. 1 cell B is the bottom-face neighbour
of cell C; conversely, cell C is the top-face neighbour of cell B. Fig. 2 depicts a scenario
with two clusters: Cluster 1 contains two overlapping trees and Cluster 2 one individual
tree. The coloured cells are the initially identified seed cells of the two clusters. Next,
connected seed cells are clustered, resulting in the seeds S1, S2, S3 and S4 in Fig. 2. Note
that, at this stage, one seed typically consists of a number of connected cells. For example,
seed S1 consists of five connected top cells. The location of a seed is defined as the centroid
of all the points inside the cell.

Fig. 1. Point cloud resampling. Points are assigned to a designated 3D cuboid cell according to its bin indices.
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Step 4: Tree Separation

The tree-separation procedure starts with the potential seeds identified in the previous
section. The strategy described in this section is to separate trees starting from the potential
seeds in the top layer of the cluster downwards to the bottom layer. The following
paragraphs describe the method in detail.

Step 4.1: Detect Multiple Component Clusters. This section categorises the 3D cuboid
clusters into either multiple or single component clusters. A multiple component cluster is
expected to contain more than one tree. A cluster is considered as having multiple
components if and only if this cluster meets the following conditions:

(1) The cluster has at least two potential seeds.
(2) The minimum distance between any two potential seeds is larger than the pre-set

minimum tree-canopy diameter.

If a cluster does not meet these conditions, it will be considered as an individual tree. A
multiple component cluster will be forwarded to the tree-separation step.

Step 4.2: Seed Inheritance. Merging close by seeds avoids separating one individual
tree with several high branches erroneously into two or more trees. After potential seed cells
are identified, the separation of multiple component clusters starts with merging seeds
separated by only a small distance. Fig. 3 shows a side view of the scenario in Fig. 2, which
has two overlapping trees, illustrating that the resampling resulted in seven vertical layers.
The identified potential seed cells are firstly clustered and labelled as S1, S2 and S3. Points
P1, P2 and P3 are the centroids of the points in each of the respective seed clusters.

The horizontal distances between the centroids of all the potential seeds are computed.
As shown in Fig. 3, the horizontal distances between the three selected seed cells are D12,

Fig. 2. Connected top cells are clustered as potential seeds of individual trees from the top layer downwards.
S1, S2 and S3 are potential seeds of Cluster 1, and S4 is a potential seed of Cluster 2.
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D23 and D13. Seeds in close proximity are merged in an iterative way as follows. First,
distances between seeds are sorted in ascending order and, for the pair of closest seeds, the
horizontal distance between them is tested to see if it is smaller than the pre-set minimum
tree-canopy diameter. In Fig. 3, horizontal distance D23 is smaller than the pre-set minimum
tree-canopy diameter DT, thus seeds S2 and S3 are merged into one seed and labelled as S2,
as illustrated in Fig. 4. Next, distances between seed pairs are recomputed and the distance
evaluation is repeated until no distance between seed cells is smaller than the tree-canopy
diameter threshold.

After merging seeds in close proximity, their bottom-face neighbours inherit the cluster
index from their top-face neighbours. As illustrated in Fig. 4, the bottom-face neighbours of
seeds S1 and S2 in layers 6 and 7 are identified, which are coloured in cyan and orange,
respectively. Those cells inherit the cluster index and form the new seeds of layers 5 and 6.
The same operation is conducted when traversing to the next layer downwards.

Similar operations are performed when traversing from the bottom layer upwards. As
shown in Fig. 3, the red cells are seed cells, and the same distance evaluation is conducted
on the centroids denoted by points P4 and P5. Then similar seed-merging and index-
inheritance operations are performed until the procedure has traversed to the top layer of the
cuboid cells.

Step 4.3: Assign Cells to Individual Trees. The objective of this step is to assign non-
seed cells to individual trees. After seed identification and merging, seed indices are
inherited via bottom-face neighbouring cells and separation continues at the next layer of
cuboid cells. If, at a given layer, cells are connected to only one seed cell, then these cells

Fig. 3. Seed cell identification and merging. D13, D12 and D23 are the distances between the three selected
seeds, respectively. DT is the distance threshold of the two trees. The distance D23 is smaller than the pre-set

minimum tree canopy diameter DT, thus potential seeds S2 and S3 are merged together as one larger seed.
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are assigned to the corresponding tree. The situation becomes more complicated when
traversing to a layer where all cells are connected and have at least two seed indices
inherited from the top layer. As shown in Fig. 4, layer 5 will obtain two different seed
indices from layer 6. To separate cells for such layers, a cell-assignment strategy based on
adjacency analysis is presented in this study.

Rather than simply considering distances to different seed cells, connectivity-based
separation takes the neighbourhood of the cells into account. Fig. 5 is a plan view of layer 5
in Fig. 4. The cells in cyan and orange have indices inherited from the top-face
neighbouring seeds S1 and S2, respectively, as depicted in Fig. 4. The striped orange and
cyan cells are boundary cells of the two trees in layer 5 and are identified first. Boundary
seed cells are defined as seed cells that have at least one unassigned cell among its eight 2D
neighbours. Unassigned cells will be assigned to a tree according to a connectivity
coefficient. First, the connectivity coefficient is set to 1 for all boundary cells. Then the
coefficient is propagated to its unassigned neighbouring cells. The connectivity coefficients
are computed using the following equation:

cðt; sÞ ¼ Cðt; sÞ � RðkÞ ð1Þ

where R(k) is the attenuation influence (see below); c(t, s) is the connectivity coefficient of a
target cell t with regard to a source cell s; and C(t, s) is the neighbour type of the target cell
with respect to the source cell, as determined as follows:

Cðt; sÞ ¼ 0 � 50; t is a face neighbour of s
0 � 25; t is an edge neighbour of s:

�
ð2Þ

A cell t is defined as a face neighbour of source cell s if either t shares a face with s,
or when all cells on the straight line connecting t with s are face neighbours of s. If a cell is

Fig. 4. Inherited labelling of trees from the top layer. Tree labels of the lower-layer cells S01 and S02 are
inherited from their top-face neighbouring seeds S1 and S2, respectively.
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not a face neighbour of a source cell, it is an edge neighbour of a source cell. For example,
in Fig. 5 cells d, e and g are face-connected neighbouring cells, while f is an edge-connected
neighbouring cell of boundary cell A.

In equation (1), R(k) denotes the attenuation of the influence from the source cell to its
unassigned neighbouring cells: R(k) = 1/k where k is the order of the cell with regard to the
source cell, defined as the length (in number of cuboids) of the shortest path connecting the
source and the target. For example, in Fig. 5, unassigned cells d, e, f and g are directly
connected to cell A, so they are first-order cells of A and hence k = 1 Similarly, cells m, n, h
and l are second-order cells so k = 2.

All the boundary cells propagate their connectivity coefficients to the connected
unassigned neighbouring cells of different orders until there is no connected unassigned cell
in the same layer. For example, in Fig. 5, cell B has cells u and v as its first-order
neighbours and cell s as its second-order neighbour. After propagating its connectivity
coefficient first to cells u and v, and then (consecutively) to cell s, cell B has finished its
connectivity propagation procedure. Cell C has no unassigned connected cells, so no
connectivity coefficient with respect to C needs to be computed. All seeds in one layer
propagate their connectivity through their boundary cells to the unassigned cells in the same
layer. The unassigned cells are then assigned to the tree that has the largest accumulated
connectivity value. After all cells are assigned to an individual tree segment, the points
inside these cells are exported as individual tree points.

Fig. 6 is an enlarged display of the red rectangle in Fig. 5, which shows the
accumulated connectivity coefficients of each cell with respect to the boundary cells of
the two trees S1 and S2. In Fig. 6, the value in the upper-right corner of each cell is the
accumulated connectivity coefficient value of tree S2 while the value in the lower-left corner
corresponds to that of tree S1. The accumulated connectivity coefficient value of an

Fig. 5. Connectivity-based cell separation. Boundary cells of seeds S1 and S2 are obtained to compute the
adjacent coefficient for all unassigned cells in the same layer, such as d, e, f and g. The striped orange and cyan

cells are boundary cells of seeds S2 and S1, respectively. The red rectangle is used in Fig. 6.
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unassigned cell to a tree in the same layer is computed as follows (note that in Fig. 6, those
values are only computed based on the boundary cells in the rectangle for demonstration):

c t; Sj
� � ¼ Xn

i¼1
ci ¼

Xn

i¼1
Cðt; siÞ � Ri: ð3Þ

Here c(t, Sj) is the accumulated connectivity coefficient of an unassigned cell
propagated from all boundary cells of tree Sj; n is the number of the boundary cells of the
tree; ci is the connectivity coefficient value of the ith boundary cell, c(t, Si); and Ri are the
neighbour type and the inverse order of the unassigned cell with respect to the ith boundary
cell si For example, the connectivity value of cell f in the red rectangle in Fig. 5 with
respect to tree S1 is computed as follows:

c1 ¼ ca1 þ ca2 þ ca3 þ ca4 þ ca5 þ ca6

¼ 0�25
3

þ 0�5
3

þ 0�5
2

þ 0�25
2

þ 0�25
1

þ 0�25
3

¼ 0�96:
ð4Þ

Here ca1 to ca6 are the connectivity coefficients for boundary cells a1 to a6, respectively.
Take ca1 for example: cell f is an edge-connected, third-order neighbour of boundary cell
a1. The influence from cell a1 is determined as 1/3. Therefore, the connectivity coefficient
of cell a1 with regard to f will be 0�25/3 according equation (1). Similarly, the connectivity
values to tree S2 are computed as follows:

c2 ¼ cb1 þ cb2 þ cb3 þ cb4 þ cb5 þ cb6

¼ 0�25
3

þ 0�5
1

þ 0�25
2

þ 0�5
2

þ 0�25
2

þ 0�25
3

¼ 0�92:
ð5Þ

Since c1 > c2 for cell f, it is assigned to tree S1. The resulting cell assignments are
illustrated in Fig. 7. It can be seen that cells o, p, m, n, h, q, r and f in light blue are
assigned to tree S1, and cells d, e, g and l in light orange are assigned to tree S2.

Fig. 6. Computed adjacent coefficients of the unassigned cells. An unassigned cell will be assigned to the tree
that has the biggest adjacency coefficient.
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Step 5: Overall Quality Analysis

This section describes the strategy and parameters to evaluate the individual tree
delineation quality in this study. During the tree-separation process, whether from the top
layer downwards or from the bottom layer upwards, each individualised tree has a quality
flag assigned to it according to the size of the tree. If the individualised tree-canopy
diameter is smaller than a pre-set threshold, the flag is set to 0; if it is larger than the
threshold, the flag is set to 1. In this work, the threshold was set to five times the minimum
tree diameter. For those trees that were flagged as 0, another separation is conducted in the
opposite direction. A valid separation result (with a flag value of 1), is chosen as the final
tree-separation result. If both traversed directions result in a quality flag of 0, this result is
given as the output. Such negative results could be an indication for a human operator that
further inspection is needed.

Expected Computational Effort

The computational effort of the proposed method depends on the size of the cuboid
cell and the complexity of the algorithm. Suppose the edge lengths of the 3D bounding box
of tree points is Dx, Dy and Dz, respectively. If the cuboid cell size used is dx, dy and dz,
then the number of cells is N = DxDyDz/(dxdydz). Since the cells will be traversed at least
once, a lower bound for the computational efforts can be set as XðNÞ. Also, the complexity
of clustering connected cells can be assigned as O(N). However, it is difficult to find an
accurate index of tree-separation complexity, since the connectivity coefficient determination
depends on the number of boundary cells, which varies in different scenarios. For example,
trees with different canopy sizes, or trees having a circular shape in horizontal cross section,
will have fewer boundary cells than a complex tree.

Results

To verify the flexibility and reliability of the proposed algorithm, five tests were
performed:

(1) Separating the same trees sampled by different sensor systems.
(2) Using different cuboid sizes to separate the same trees sampled by the same sensor.
(3) Separating trees with occluded trunks.

Fig. 7. Previously unassigned cells are assigned to a particular tree as their colour indicates.
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(4) Separating trees on steep terrain.
(5) Validated and comparison against manually processed ground-truth data and an existing

method (Wu et al., 2013) using a patch of 11 trees scanned by TLS.

The presented algorithm was implemented in C++ and tested on a Dell desktop with
four 3�6GHz processors and 16�0GB memory. The results of these tests are discussed
below.

Same Trees Sampled by Different Sensors

In this section, the flexibility of the presented method is evaluated on a group of three
trees, scanned by both MLS and TLS. The trees are all of the species Aesculus
hippocastanum “Baumannii” (Delft City Trees, 2017). The datasets sample two almost
overlapping trees and one isolated tree; details are given in Table I. The data was acquired
by different companies hired by the Dutch government; the name of the ALS system is
unknown, despite enquiries.

Fig. 8 shows three different point clouds sampling the same trees. Because of
differences in scanning mechanism and acquisition geometry, the point density of the three
datasets varies considerably (Table I). Compared to MLS and TLS (Figs. 8(b) and (c),
respectively), the ALS point cloud (Fig. 8(a)) consists of far fewer points. Note that the two
left-hand trees in green and blue) are almost touching (overlapping) whereas the right-hand
one (in red) is isolated.

The delineation results of the ALS, MLS and TLS point clouds are illustrated in Fig. 8.
In this test, the selected cuboid cell size was 1�0m in the x and y directions and 2�5m in
the z direction. The minimum tree-canopy diameter was 7�5m and the maximum tree
bounding box size was set to five times of the minimum canopy diameter. The same cuboid
size was used for all three point clouds. The processing time for ALS, MLS and TLS
datasets was 0�241, 0�428 and 0�626 s, respectively. Note that although the number of points
in the TLS point cloud is 644 times larger than that of the ALS dataset, the processing time
is only three times longer. As can be distinguished from the enlarged views on the left of
Fig. 8, the two overlapping trees are well separated in all three data sets. However, the point
clouds of these deciduous trees were collected when they were in leaf (leaf-on). As a result,
several branches were severely occluded and not all branches could be completely scanned,
let alone separated using smaller-size cuboids.

Separating Trees after Leaf Shedding (Leaf-off) at the Branches Level

In this paragraph, tree individualisation is demonstrated on two nearly overlapping
deciduous trees scanned after abscission (leaf shedding) and thus leaf-off. A smaller sized
cuboid was used to test the capability of the proposed method to separate trees at the

Table I. Details of the three test datasets.

ALS MLS TLS

Scanner Unknown(van der
Sande et al., 2010)

Fugro DriveMap Leica C10

No. of tree points 3640 112 957 2 346 740
Density (points/m3) 25�3 241�9 1062�5
Scanning date 30th November 2011 23rd November 2013 23rd July 2015
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Fig. 8. Original point clouds sampled by three different sensors and delineation results of the overlapping trees:
(a) ALS; (b) MLS; and (c) TLS. The enlargements show the overlap between the two left-hand trees.
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branches level. Two overlapping trees were scanned by a Leica C10 TLS scanner. Fig. 9(a)
shows the original point cloud consisting of 270 909 points. To demonstrate the proposed
method, the size of the cuboid used for re-sampling was set to 10 cm in all three directions.
The minimum tree diameter was set to 4�5m. The two trees were individualised in the
bottom-to-top direction. Fig. 9(b) shows the separation results at cuboid level. Fig. 9(c) is the
area in the rectangle in Fig. 9(a), which clearly illustrates that the branches of the two trees
are well separated. Note that this conclusion is based on visual inspection in a 3D point
cloud viewer. It revealed that the green and red branches and twigs in Figs. 9(b) and (c)
indeed belonged to different trees.

Small cuboids can also be applied to extract structure within an individual tree. This is
demonstrated on a single tree, scanned by a Leica C10 laser scanner. To separate individual
branches, a cube with 10 cm sides was used in combination with a minimum tree diameter
threshold of 1�5m. The separation was conducted in the top-to-bottom direction. The
original point cloud consisted of 107 062 points and the height of the tree was
approximately 26�2m (Fig. 10(a)). Fig. 10(b) provides the separation results: the resulting
five components are the main branches of the tree.

Trees on Steep Terrain

This section demonstrates the capability of the proposed algorithm to individualise trees
on steep terrain. Fig. 11(a) shows steep terrain at Obergurgl, Austria. There are several
spruce trees on the steep slope and some of them are touching or overlapping. This area
was scanned on 7th July 2015 with a Riegl VZ-400 scanner. The distance of the TLS to the
cliff is 95m on average and the scanning resolution was set to “high”. The area within the
red rectangle was selected for testing. The original point cloud of this area has 121 039
points with 30 732 tree points remaining after segmentation.

After segmenting the tree points from the original point cloud, the proposed algorithm
was applied. The edge length of the cuboid cells was set to 10 cm and the minimum tree
diameter was set to 1�5m. Fig. 11(c) shows the resulting trees while Fig. 11(d) provides the

Fig. 9. Individual tree delineation, using a small cuboid size, of two overlapping trees scanned by TLS. (a) Original
point cloud of the two trees. The points are coloured by height from red to blue. (b) Individualisation results of
the proposed method. The cuboids in green and in red belong to the two different trees. (c) Close-up view of

some branches and twigs.
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results from the method of Wu et al. (2013). Ground points are dark red and individualised
trees (36 in total) are depicted in random colours. As can be observed from the enlarged
area in the black rectangle, the touching or overlapping trees are correctly individualised in
Fig. 11(c), while Fig. 11(d) shows that the existing method (Wu et al., 2013) did not separate
the overlapping trees using a voxel size of 10 cm.

Validation Against Ground Truth Data

To quantitatively evaluate the accuracy of the proposed method for individual tree
delineation, a group of 11 trees in dense forest with very small gaps between the trees was
scanned by a Leica C10 TLS scanner. The points of those trees were manually separated
using the open-source CloudCompare software and the results were used as ground truth for
accuracy evaluation. The original point cloud and the segmented ground truth are shown in
Fig. 12 in both plan (top) and side views. Note that each of the 11 trees is numbered in both
views of the original TLS point cloud. In this test, the method proposed by Wu et al. (2013)
was implemented for comparison. For both methods (Wu’s and the presented one), the same
cuboid cell size of 30 cm was used and 1�5m was set as minimum tree diameter.

The individual tree delineation results of the two methods are shown in Fig. 13, where
(a) is a top view of the separation results from Wu’s method and (b) is the result of the
proposed method. The method in Wu et al. (2013) correctly assigned most of the points to a

Fig. 10. Separation of branches. (a) Original TLS point cloud: the points are coloured from red to blue based
on height. (b) Separation results using 10 cm cuboids in combination with a small (1�5m) minimum tree

diameter threshold in the top-to-bottom direction; different colours represent different individual branches.
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Fig. 11. Individual tree delineation on steep terrain at Obergurgl, Austria from a single TLS point cloud.
(a) Test area. (b) Original segmented tree points and ground points. Terrain points are in dark red and the tree
points are coloured from red to blue according to height. (c) Individual tree delineation results of trees on this

steep terrain. (d) Tree separation results obtained by the method of Wu et al. (2013).
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particular tree; however, the proposed method is superior at separating overlapping parts of
trees and therefore generates better results. To quantify the delineation accuracy of the two
methods, the manually separated ground truth of the trees was used as reference. The
separation of the two methods was computed using Cohen’s kappa coefficient (Cohen,
1960), based on the number of points that were correctly assigned. For this purpose, each of

Fig. 12. Original TLS point cloud (bottom left) and manually separated ground truth (top right) of a group of
11 overlapping trees: (a) top view; (b) side view.
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the 11 trees was considered as a classification class. Using the reference data, an 119 11
confusion matrix was determined as shown in Table II. From this confusion matrix, Cohen’s
kappa coefficient was determined for both Wu’s method and the proposed method. The

Fig. 13. Top view of the individual tree delineation results of the two methods applied on TLS point cloud:
(a) Wu et al. (2013) method; (b) proposed method. The areas indicated by A, B and C are cases where Wu’s

method resulted in larger errors.

Fig. 14. Tree separation details of Wu’s existing method (a) and the proposed method (b) from TLS point
clouds on tree 10 and tree 11 in Fig. 10.
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kappa of Wu’s method is 89% and for the presented method it is 94% for this specific
group of trees.

Fig. 13(a) shows the results from Wu’s method. In the highlighted (elliptical) areas, tree
points were wrongly assigned to neighbouring trees. The proposed method shows an
improvement of 5% with respect to Wu’s method, although one part of a branch is wrongly
assigned to an adjacent smaller tree (Fig. 12). As can be seen in Table II, the proposed
method wrongly assigned 115 points from tree 10 to tree 11, and 508 points from tree 11 to
tree 10. For Wu’s method, the corresponding numbers were 196 and 86 236, respectively.
Many of those points correspond to area A in Fig. 13(a). The subsequent benefit is
significant when estimating the crown projection area (CPA) based on the individual tree
delineation (separation) results of the two methods. Fig. 15 shows the estimation results of
the CPA on points of tree 10 and tree 11 in Fig. 14. The areas of the two trees were
approximated by an alpha shape with an alpha value of 0�8m (see the section above on
“Point-based Approaches”). Fig. 15 illustrates the CPA from the two results. The estimated
CPA of tree 10 is 61�90m2 (Wu’s method) versus 33�01m2 (proposed method), while for
tree 11 the corresponding areas are 77�38m2 versus 100�62m2.

Fig. 15. Crown projection area (CPA) estimation from the resulting points of tree 10 and tree 11:
(a) Wu’s method; (b) proposed method.
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Conclusions and Recommendations

In this work a cuboid scalable individual tree delineation method has been proposed.
The innovations as proposed in the “Introduction” section were implemented and validated
as follows:

(1) Rather than simply considering the distance from unassigned individual cuboids to a
seed cuboid, a novel adjacency analysis has been introduced that follows the shape of
the canopy in assigning cuboids to individual trees. In the “Results” section it has been
shown that this approach leads to a higher individual tree delineation accuracy than an
existing method.

(2) The input tree points were first resampled using cuboids, whose edge lengths in each
Cartesian axis direction were different (unlike conventional voxels). By using smaller
edge lengths in the two horizontal directions, it is possible to increase the horizontal
resolution while maintaining the vertical traversing time.

(3) Since most of the 3D space of a rectangular bounding box is not occupied by the input
tree points, 3D clustering of the cuboids avoided redundancy in seed cuboid detection.

(4) Traversing cuboid layers in two directions makes the presented method more flexible to
deal with point clouds obtained from different viewpoints, as implemented in airborne,
mobile and static laser-scanning systems.

The presented method was demonstrated and tested on several datasets. Its applicability
in individual tree delineation from point clouds obtained in different seasons was validated.
In leaf-on seasons, branches are typically occluded by leaves and the continuous
representation of branches in point clouds is problematic. The proposed method resamples
point clouds using cuboids which reduce the influence of occlusions. The presented tests
illustrate the advantages and reliability of the proposed algorithm, but also reveal some
weaknesses. The input of this algorithm is tree points only, thus the tree points need to be
classified and segmented from the original point clouds first by some existing method. The
algorithm is tuneable by two types of input parameters. The first three parameters control
the cuboid size in the three Cartesian directions; the fourth asks for a minimum tree-canopy
diameter. Nevertheless, over- or under-individualisation may occur when trees vary
considerably in size.

A recommendation is to tile input tree points according to approximate tree size. This
is expected to generate more reliable delineation results. Also, the proposed method is based
on cuboids, which correspond to uniform 3D grids. Since most space in a bounding box of
the input point cloud data is not occupied by tree points, uniform 3D resampling to cuboids
reduces memory redundancy in the processing. Therefore, an additional recommendation is
to organise the cells using octrees rather than cuboids in a uniform 3D grid. The
applicability of the proposed method in forest applications with dense trees and undergrowth
has not been tested and needs further research. A possible application of the proposed
method is tree-parameter extraction. Based on the organisation of tree points using cuboids,
tree diameters at breast height can be obtained from the trunk layers. Given volumetric
reference measurements and wood density values, a possible next study topic could be to
investigate whether the entire volume of trees, or even biomass, could be estimated starting
from the delineation results. The authors are also making efforts to maintain a webpage of
this work, reporting on further improvements of the proposed method (Individual Tree
Delineation, 2018).
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R�esum�e

La d�etection et la documentation manuelle des arbres est une tâche fastidieuse. Le lidar offre une solution
possible pour l’inventaire automatique des arbres. Les approches existantes pour la segmentation des arbres
dans des nuages bruts de points ne proposent pas de m�ethodes efficaces et adapt�ees �a toutes les �echelles pour
s�eparer des arbres individuels �echantillonn�es par diff�erents syst�emes lidar avec une qualit�e acceptable en toute
circonstance. Cette �etude propose et valide un nouvel algorithme pour la d�elimitation efficace d’arbres
individuels �a partir de nuages de points lidar. L’algorithme propos�e commence par r�e�echantillonner les points
dans des cellules cubiques (voxels), puis regroupe les cellules connexes en traversant verticalement les couches
de cellules. Les arbres proches sont identifi�es grâce �a une nouvelle analyse d’adjacence de cellules. La
performance de cet algorithme en termes d’adaptabilit�e au changement d’�echelle est valid�ee �a partir de nuages
de points issus de syst�emes laser �a balayage a�erien, mobile et terrestre. Une validation bas�ee sur des donn�ees
de terrain de r�ef�erence fait �etat d’une am�elioration de 89% �a 94% par rapport �a des m�ethodes connues pour
un temps de calcul comparable.

Zusammenfassung

Eine €Uberwachung und Dokumentation von B€aumen ist sehr arbeitsaufw€andig. Lidar bietet das Potential
f€ur automatische Bauminventur. Es gibt Ans€atze zur Segmentierung von B€aumen aus Punktwolken, die
allerdings noch nicht in der Lage sind, einzelne B€aume in Punktwolken verschiedener Lidar-Systeme zuverl€assig
und mit ausreichender Qualit€at unter vielf€altigen realen Bedingungen zu separieren. Diese Studie stellt einen
neuen Algorithmus zur effizienten Erfassung von B€aumen in Lidar-Punktwolken dar. Der Algorithmus bildet
Punkte mit Hilfe von quaderf€ormigen (Voxel) Zellen um. Nacheinander verbundene Zellen werden durch
vertikale Traverse der Zellschichten akkumuliert. B€aume in n€achster Nachbarschaft werden durch eine
neuartige Zellanalyse identifiziert. Der Vorteil der Skalierbarkeit des Algorithmus wird an flugzeuggest€utzten,
mobilen und terrestrischen Laserscanpunktwolken validiert. Anhand von Solldaten ist festzustellen, dass bei
gleicher Rechenzeit, eine Verbesserung von 89% bis 94% im Vergleich zu aktuellen Verfahren erzielt werden
kann.
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Resumen

Monitorizar y documentar manualmente �arboles es un trabajo intensivo. El lidar proporciona una posible
soluci�on para la generaci�on autom�atica del inventario de �arboles. Los enfoques existentes para segmentar
�arboles a partir originalmente de nubes de puntos lidar carecen de m�etodos escalables y eficientes que separen
�arboles individuales muestreados por diferentes sistemas lidar con calidad suficiente bajo todas las
circunstancias. En este estudio, se presenta y valida un algoritmo nuevo para la delimitaci�on eficiente de
�arboles individuales a partir de nubes de puntos lidar. El algoritmo propuesto primero remuestrea los puntos
usando c�elulas cuboides (v�oxels). Los v�oxels adyacentes se acumulan atravesando verticalmente las capas de
v�oxels. Basados en un nuevo an�alisis de adyacencia de v�oxels se identifican �arboles que est�an pr�oximos. El
rendimiento escalable de este algoritmo se valida con nubes de puntos lidar aerotransportados, m�oviles y
terrestres. La validaci�on con verdad terreno demuestra una mejora del 89% al 94% en comparaci�on con un
m�etodo de vanguardia, mientras que el tiempo de c�alculo es similar.

摘要

人工监控和记录树木的信息是劳动密集的工作。激光扫描为树木清查数据库自动化提供了一种可能

的解决方案。现有基于原始点云的树木分割方法缺乏可扩展性与效率, 不能适用于不同情况下的不同激光

扫描系统。本研究提出并验证了一种新的由激光扫描点云中提取单一树木的有效算法。该方法首先使用长

方体单元(体元)将点云重新取样, 再连续联接垂直方向各层的相通单元。使用一种创新的单元邻接分析方

法, 根据邻近性以识别树木。利用机载、地面移动和固定式激光扫描所获得点云数据验证本算法的性能与

可扩展性, 与地面控制数据相比较, 本文所提出的方法较现有的最佳方法在正确性上由 89% 提高到 94%,
而所需计算时间接近。
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