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Urban road environments contain a variety of objects including different types of lamp poles and traffic
signs. Its monitoring is traditionally conducted by visual inspection, which is time consuming and expen-
sive. Mobile laser scanning (MLS) systems sample the road environment efficiently by acquiring large and
accurate point clouds. This work proposes a methodology for urban road object recognition from MLS
point clouds. The proposed method uses, for the first time, shape descriptors of complete objects to match
repetitive objects in large point clouds. To do so, a novel 3D multi-scale shape descriptor is introduced,
that is embedded in a workflow that efficiently and automatically identifies different types of lamp poles
and traffic signs. The workflow starts by tiling the raw point clouds along the scanning trajectory and by
identifying non-ground points. After voxelization of the non-ground points, connected voxels are clus-
tered to form candidate objects. For automatic recognition of lamp poles and street signs, a 3D significant
eigenvector based shape descriptor using voxels (SigVox) is introduced. The 3D SigVox descriptor is con-
structed by first subdividing the points with an octree into several levels. Next, significant eigenvectors of
the points in each voxel are determined by principal component analysis (PCA) and mapped onto the
appropriate triangle of a sphere approximating icosahedron. This step is repeated for different scales.
By determining the similarity of 3D SigVox descriptors between candidate point clusters and training
objects, street furniture is automatically identified. The feasibility and quality of the proposed method
is verified on two point clouds obtained in opposite direction of a stretch of road of 4 km. 6 types of lamp
pole and 4 types of road sign were selected as objects of interest. Ground truth validation showed that the
overall accuracy of the �170 automatically recognized objects is approximately 95%. The results demon-
strate that the proposed method is able to recognize street furniture in a practical scenario. Remaining
difficult cases are touching objects, like a lamp pole close to a tree.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Urban roads are of crucial importance in modern society by
reducing the distance between people and services, and produce
economic and social benefits (Vanier, 2006). The condition of the
urban road furniture, i.e. street lamps, traffic lights, traffic signs,
bus station signs and billboards, needs to be inspected and docu-
mented regularly to avoid potential risks caused by wear, vandal-
ism or accidents (Halfawy, 2008). Furthermore, high precision
urban maps are extensively demanded in various fields, such as
smart cities (Nebiker et al., 2010; Batty et al., 2012), autonomous
driving (Li et al., 2004; Schreiber et al., 2013) and intelligent trans-
portation systems (Bishop, 2000; Agamennoni et al., 2011; Ivan
et al., 2015), etc. Efficient and frequent updating of the urban road
inventory is essential to ensure the overall technical and social
function of a city. Currently, safety inspections on roadside
furniture are conducted by manual in situ examination or semi-
automatic interpretation of collected imagery and video data (Pu
et al., 2011). These methods are valid and practical in identifying
defect roadside furniture. However, the methods are labor inten-
sive and expensive. Therefore, the methods are not optimal for
striking a balance between maintaining safety and reducing
expenses.

In the last decades new techniques based on photogrammetry
and remote sensing have been developed for obtaining accurate

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2017.03.012&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.012
mailto:jinhu.wang@tudelft.nl
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.012
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


112 J. Wang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 128 (2017) 111–129
3D urban measurements (Haala and Brenner, 1999; Ellum and El-
Sheimy, 2002; Frueh and Zakhor, 2003; Over et al., 2010; Mc
Elhinney et al., 2010; Puente et al., 2013). Among the developed
techniques, Mobile Laser Scanning (MLS) systems, which combine
Light Detection And Ranging (LiDAR), Global Navigation Satellite
Systems (GNSS) and an Inertial Navigation System (INS), are able
to obtain dense and highly accurate point measurements
(Vosselman and Maas, 2010). A MLS system continuously samples
the road environment and the geometry of objects is captured in
form of point clouds with versatile information, i.e. precise coordi-
nates, intensity and color. In recent years, the collected point cloud
data have been used in various applications, such as 3D tree detec-
tion and modeling (Rutzinger et al., 2010; Zhong et al., 2013; Wu
et al., 2013; Lindenbergh et al., 2015), road surface extraction
(Jaakkola et al., 2008; Mc Elhinney et al., 2010; Pu et al., 2011;
Wang et al., 2013; Guan et al., 2014), curbstone identification
(Zhou and Vosselman, 2012; Yang et al., 2012, 2013; Kumar
et al., 2014), road corridor objects classification (Pu and Zhan,
2009; Puttonen et al., 2011), change detection (Qin and Gruen,
2014) and mountain road monitoring (Wang et al., 2014; Díaz-
Vilarino et al., 2016). Particularly, the obtained high density point
clouds enable the detection and identification of objects along road
corridors. Pole-like objects, such as tree trunks, lamp poles and
traffic light poles can be identified and extracted (Brenner, 2009;
Golovinskiy et al., 2009; Lehtomäki et al., 2010; Pu et al., 2011;
Yang et al., 2012, 2015; Cabo et al., 2014). However, still lacking
are methods for recognition, identification and grouping specific
types of roadside object from MLS point clouds.

In this work, an automatic urban roadside object recognition
method is presented for MLS point cloud data. The proposed
method starts with raw point cloud data obtained by a MLS sys-
tem. First, the point cloud is tiled along the road direction follow-
ing the trajectory of the MLS system. Next, the point cloud tiles are
divided in ground and non-ground points. The non-ground points
are organized in an octree data structure and connected voxels
are clustered. Consecutively, a newly proposed 3D SigVox shape
descriptor of the objects of interest, such as different types of street
lamps and traffic signs, is constructed. Finally, objects in the clus-
tered point clouds are recognized by SigVox descriptor enabled
template matching.

The contribution of this work to the state of the art is as follows:
(i) It introduces a novel 3D multi-scale shape descriptor, that is
easy to compute and powerful for shape detection; (ii) It gives a
workflow to use this shape descriptor to identify different types
of lamp poles and traffic signs; and (iii) In doing so, it shows
how to efficiently handle large MLS point clouds, e.g. by using a
suitable tiling strategy. What we consider as a notable innovation
is that this method, for the first time, use shape descriptors of com-
plete objects to match repetitive objects in large point clouds.

The remainder of the article is organized as follows. Section 2
presents related work in object recognition, followed by a detailed
description of the proposed method in Section 3. In Section 4 the
proposed method is demonstrated and validated on a MLS point
cloud sampling 4 km of road environment. Finally, conclusions
and recommendations are given in Section 5.
2. Related work

MLS systems efficiently sample the surface of objects along a
road and record the measurements as dense and accurate point
clouds (Puente et al., 2013; Barber et al., 2008; Haala et al., 2008;
Cahalane et al., 2010). The acquired measurements, which typically
consist of 3D coordinates, intensity and color information, enable
the recognition of roadside objects. A variety of methods has been
presented on this topic. The available methods for object recogni-
tion can roughly be classified into three categories: (i) model fitting
based (Pu et al., 2011; Rutzinger et al., 2010; Lehtomäki et al.,
2010; Brenner, 2009; Cabo et al., 2014; Xiao et al., 2016); (ii)
semantic based (Fan et al., 2014; Yang et al., 2015; Babahajiani
et al., 2015); and (iii) shape based (Golovinskiy et al., 2009; El-
Halawany and Lichti, 2011; Velizhev et al., 2012; Bremer et al.,
2013; Yang and Dong, 2013; Li and Oude Elberink, 2013;
Rodríguez-Cuenca et al., 2015). This section first reviews the
related work corresponding to the aforementioned methods on
object recognition in Sections 2.1,2.2,2.3 respectively. Finally, a
comparison of some related methods is given in a table.

2.1. Model fitting methods

A model fitting based object recognition method in general
starts with segmenting and clustering the point cloud, followed
by fitting the point segments to known geometric models, such
as cylinders and planes. Brenner developed an algorithm for pole
extraction from MLS scanned point clouds. The method first
assumes that the basic characteristic of a pole is that it is upright.
There is a kernel region where laser scanned points are present and
an outside region where no points are present (Brenner, 2009).
Point segments are analyzed in cylindrical stacks and when a cer-
tain minimum number of stacks is detected, the segment is consid-
ered as a pole. The final step is to estimate the exact position of the
pole.

Lehtomäki et al. presented an algorithm to detect pole-like
objects in a road environment using MLS point clouds. The algo-
rithm first segmented scan lines and then remaining point groups
were clustered. Consecutively adjacent clusters that are closely
connected or overlapping in horizontal profiles were merged.
Based on these merged point clusters, cylinder fitting was per-
formed to detect poles along the road direction. The method was
able to find 77% of the poles if compared to a manual data analysis
with a correctness of 81% (Lehtomäki et al., 2010).

Pu et al. presented a method to recognize basic structures from
MLS point clouds for road inventory. The method first roughly clas-
sified tiled raw point clouds into ground and non-ground objects.
Then geometric attributes, i.e. size, position, orientation, color
and material were characterized and organized per segment. Con-
secutively objects with planar features were approximated by pla-
nar models, such as rectangles, circles and triangles. Pole-like
objects were sliced vertically and for each slice a 2D enclosing rect-
angle was derived. Next the differences of those rectangles, i.e.
position and size differences, between neighboring slices were
checked, and if they were within a defined threshold then similar
slices were accumulated. Finally, if the number exceeded a maxi-
mum length, a point segment was considered a pole-like object
(Pu et al., 2011). This method was capable of recognizing building
walls and pole-like objects such as lamp poles and tree trunks. The
final results showed that 86% and 64% of poles and trees respec-
tively were correctly recognized.

Cabo et al. introduced an algorithm that automatically detects
pole-like street furniture objects from MLS point clouds. Rather
than directly considering each point as the aforementioned meth-
ods did, this algorithm first simplified the point cloud into voxels.
Then each 2D vertical layer of the constructed 3D regular voxels
was analyzed and potential elements were selected by an isolation
criterion. The isolation criterion was evaluated based on fitting two
2D rings of different radii. If a candidate voxel cluster is enclosed
between the inner and outer ring, then it is considered as a poten-
tial pole object. The algorithm was tested on point clouds of four
test sites and was able to recognize all the target pole-like objects
except of severely occluded ones (Cabo et al., 2014).

Xiao et al. did not consider pole-like objects but introduced a
method to detect street-side vehicles with a deformable vehicle
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model using MLS point clouds (Xiao et al., 2016). This method first
classified raw point clouds into ground, buildings and street
objects. Then geometric features were extracted from obtained
street objects. Next, these features were fit to an explicit model.
The vehicle recognition accuracy could reach up to 95%.

2.2. Semantic methods

Semantic methods for object recognition usually define a set of
rules based on prior knowledge of the objects. Then based on these
rules, objects are extracted and recognized. Fan et al. introduced an
algorithm for identifying man-made objects along urban road cor-
ridors from MLS point clouds (Fan et al., 2014). The method
assumes that, firstly, man-made objects are geometric regular
whereas vegetation has diversity in shape; secondly, different
urban man-made objects are characterized by the point extension
and the height above the ground level. With the above rules, the
method divides a MLS point cloud into three layers with respect
to vertical height. In each layer, seeds of man-made object are indi-
cated by a line filter in the foot prints of off-ground objects. Further
classification is performed on those seeds by checking in which
layers the seed points of an object are found. Finally, points belong-
ing to respective objects are retrieved based on the classified seed
points. The capability on extracting man-made objects was found
to have a detection rate of 83%.

Teo et al. proposed a similar method as Cabo et al. in (Cabo
et al., 2014) to detect pole-like object from MLS point clouds
(Teo and Chiu, 2015). After removal of building facade points, the
point cloud was resampled by voxels which were used to obtain
a coarse segmentation. Next, fine-segmentation is conducted based
on point to point distances which enables the separation of over-
lapping objects. Based on a series of predefined rules, pole-like
objects were detected in a hierarchical way. The method was
tested on two point clouds and the results showed that the correct-
ness of the pole-like detection are 97.8% and 96.3% respectively for
those test data sets. However, the method cannot classify different
type of pole-like objects.

Babahajiani et al. presented a method to recognize objects in 3D
point clouds of urban street environments (Babahajiani et al.,
2015). The method starts with automatically extracting ground
points. Building facades are detected using binary range images.
Then the remaining points are voxelized and transformed to super
voxels. Consecutively, boosted decision trees are employed to train
and classify the extracted local 3D features of the voxel cells. The
output of the classification is labeled with semantic classes. This
method is evaluated on a challenging fixed-position TLS point
cloud and a MLS point cloud. The global accuracy and per-class
accuracy were about 94% and 87% respectively.

Yang et al. proposed an automatic algorithm for hierarchical
extraction of urban objects from MLS point clouds (Yang et al.,
2015). The method segments MLS points into ground and non-
ground points. Based on the non-ground points, multi-scale super-
voxels are generated. For each supervoxel, its geometric nature is
determined by PCA. Then the multi-scale supervoxels are seg-
mented with regard to their geometric type. In addition, the sal-
iency of the segments is also calculated. Furthermore, seven
semantic rules are defined corresponding to seven types of object,
i.e. building, utility poles, traffic signs, trees, streetlamps, enclo-
sures and cars. The method was validated on two MLS point clouds
and the results demonstrate that the object extraction and classifi-
cation accuracy of the proposed method was better than 91%.

2.3. Shape based methods

Shape based methods consider the explicit or implicit shapes of
point clusters or segments. Then shape features are calculated to
classify and identify objects from MLS point clouds. Golovinskiy
et al. presented a shape-based recognition method for analyzing
3D MLS point clouds of urban environments (Golovinskiy et al.,
2009). The method first determines the location of each potential
object, then those objects are segmented from the original point
cloud. Features are extracted from these object segments. Classifi-
cation of those segments is performed based on the extracted fea-
tures. The evaluation demonstrated that this method is able to
recognize 65% of the objects.

El-Halawany et al. proposed a pipeline for roadside pole detec-
tion from MLS point clouds (El-Halawany and Lichti, 2011). The
algorithm first calculates the eigenvalues of the covariance matrix
of a local neighborhood using a KD tree. Then eigenvalue-based
segmentation is conducted and linear objects are extracted by
region growing. The final recognition results are evaluated by
cylinder fitting and an eigen-radius relation. Velizhev et al. pro-
posed an implicit shape model based automatic method for object
localization and recognition in 3D outdoor scenes from MLS point
clouds (Velizhev et al., 2012). The method consists of two steps.
First a list of hypotheses on objects is determined by connected
component extraction. Then objects are recognized using local
descriptors and a voting-based localization method. The method
was validated on a MLS point cloud and the recognition precision
was 68% and 72% for cars and light poles respectively.

Bremer et al. presented a method based on eigenvalues and
graphs to extract objects from MLS point clouds (Bremer et al.,
2013). First the method calculates a 3� 3 covariance matrix for
each point from a local neighborhood and eigenvalues and eigen-
vectors are derived. Then those eigenvalues are characterized and
classified. By connected component segmentation and clustering,
ground and building facades are separated. Finally pole objects
including trees are separated using a Dijkstra region growing
approach.

Yu et al. proposed a street light pole extraction algorithm for
MLS point clouds based on pairwise 3D shape context (Yu et al.,
2015). The method first detects road curbstones based on a series
of profiles perpendicular to the road direction. Curb-lines are
extracted to divide a point cloud into road and non-road points.
Ground points are further segmented from non-road points using
a voxel based height filter. Next, non-ground points are clustered
as separated object segments. Finally a point based 3D shape
context, i.e. the fast point feature histogram (FPFH) proposed in
(Rusu et al., 2009), was used to match the objects of interest. The
method was tested on a MLS point cloud and street poles were
robustly extracted with a completeness over 99% and a correctness
of 97%.

Rodríguez-Cuenca et al. presented an automatic pole-like object
detection and classification method fromMLS and TLS point clouds
based on an anomaly detection algorithm. The method first
extracts ground points and then based on an anomaly detection
algorithm, vertical objects are detected as point clusters. Then
the detected vertical objects are classified as either man-made
poles or trees. The testing results demonstrated that the detection
rate was 96% and the classification rate was 95%.

Table 1 summarizes some key methods and compares their
approach to the proposed SigVox method. So far, only (Yu et al.,
2015) also matches different instances of the same type of furni-
ture. Our proposed method has the same goal, but we propose
the use a shape descriptor that operates at object scale.
3. Methodology

As illustrated in Fig. 1, the proposed algorithm for automatic
urban roadside object recognition consists of four consecutive
steps:



Table 1
A comparison of four existing methods with the proposed method.

Method Shape descriptor Identified objects Used input Voxel

Yang et al. No Buildings, traffic signs, trees, street lamps, cars, enclosures (x, y, z, Intensity, r, g, b) No
Yu et al. Point based Bus stations, light poles traffic poles (x, y, z) No

Cabo et al. No Poles (x, y, z) Yes
Teo et al. No Pole-like objects (x, y, z) Yes
SigVox Object based Different lamp poles and road signs (x, y, z) Yes

Fig. 1. Overall methodology of the proposed algorithm. The method starts with a MLS point cloud and results in a list of roadside objects.
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1. Pre-processing. First the input raw point cloud is tiled with
regard to the scanning trajectory. Next, the tiled point cloud is
divided in non-ground and ground points.

2. Voxelization and building SigVox descriptors. Non-ground
points are voxelized using an octree and connected voxels are
clustered. Examples of objects of interest are manually selected
for training. SigVox descriptors are constructed to form a tem-
plate list.

3. Similarity Matching. Each of the clusters is automatically exam-
ined if it is a candidate for the selected objects of interests. If
yes, then its SigVox descriptor is built and its similarity to the
different training objects is computed. The cluster is then
assigned to the best matched training object.
4. Validation. The recognition results are analyzed with regard to
ground truth data and their accuracy is determined.

3.1. Pre-processing

The pre-processing in this work consists of two parts, i.e. tiling
of the raw point cloud, and separation of ground and non-ground
points, as indicated in Fig. 1. One scan of a MLS point cloud data
set usually is too large to process on a normal desktop computer.
Thus the raw point cloud is divided into tiles of suitable size. Fur-
thermore, the focus of this work is on the non-ground objects
rather than the ground points. Therefore, the tiles of the point
cloud are further segmented into ground and non-ground points.



Fig. 3. Geometry of a tile polygon along the scanning trajectory. The Pi denote given
trajectory points. The Li and Ri are computed tile boundary points and are defined
on the basis of a width parameter d.
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In this work, the scanning trajectory of the MLS system is used
to partition the original MLS point cloud. Trajectory data is
obtained by the Position and Orientation System (POS) of the
MLS system, which consists of a series of 3D positions recorded
at high frequency. The original MLS point cloud is tiled along the
scanning trajectory.

Fig. 2 shows an example tiling of a raw point cloud acquired by
a MLS system. The red line is a segment of the so-called Smoothed
Best Estimation of Trajectory (SBET) of the MLS system and the
purple arrow indicates the scanning direction. In this example,
three tiles are generated and overlapping areas are indicated. Dur-
ing tiling, the 3D trajectory is projected on the horizontal plane. For
each tile, the length along trajectory, i.e. the distance between
Starting point and Endpoint along SBET in Fig. 2, and the width
across trajectory are flexible. Fig. 3 is a magnification of the 2D
polygon in Fig. 3. Points P1, P2 and P3 are points of SBET and d is
the width of the polygon in the across trajectory direction. The
2D boundary of each tile is obtained by accumulating polygons
of the defined resolution k. In the first polygon L1R1R2L2, edge
L2R2 is perpendicular to line segment P1P2. Consecutively, edge
L3R3 of the second polygon L2R2R3L3 is obtained. All those concate-
nated 2D polygons form the boundary of Tile 1. Finally, all points
that project within the boundary of the tile are output as belonging
to that tile.

The next step of pre-processing is to identify the non-ground
points in the tiled point clouds. In this study, the algorithm pro-
posed by Pfeifer (Pfeifer, 2001) is used. The non-ground points will
be forwarded to the next step. Meanwhile, points from objects of
interest, such as street lamp poles and traffic signs, are selected
and stored separately for training purposes.

3.2. Voxelization

The voxelization is performed on the non-ground points only. In
this step, non-ground points are re-sampled to voxels organized by
an octree data structure. Next connected voxels are clustered.

The octree data structure is extended to 3D from the 2D quad-
tree as introduced by Klinger (Allen, 1971). The octree data struc-
ture connects each branch of the tree node with a 3D Cartesian
node, which is also defined as a voxel. This tree node can be subdi-
vided recursively into 8 branches, i.e. octants. Fig. 4 demonstrates
an octree based Cartesian spatial subdivision and its hierarchical
data structure. This data structure enables efficient neighborhood
searching by building up a series of loop up tables. In this work,
the neighborhood searching strategy proposed by Payeur is imple-
mented (Payeur, 2006).
Fig. 2. Tiling of original MLS point cloud data along the road corridor direction. Differen
figure legend, the reader is referred to the web version of this article.)
3.3. Clustering and selecting candidate clusters

For the voxelization of the non-ground points, the bounding box
of a tile of non-ground points is considered as the root node of the
octree structure. The root node is subdivided recursively until the
preset subdivision criteria are met. Consecutively, connected vox-
els are clustered based on a 3D seed filling algorithm proposed
by Yu et al. (Yu et al., 2010). Then the points inside each voxel clus-
ter are stored as point clusters. The subsequent point clusters are

denoted by Ci, i ¼ 1;2; . . . ; k. Here k is the number of obtained point
clusters. It is expected that many of these point clusters correspond
to a roadside object like a street pole or traffic sign.

Next the 3D bounding box, i.e. BðCiÞ, of each point cluster Ci, is
obtained and compared with the 3D bounding boxes of the

selected training objects T j, j ¼ 1;2; . . . ;h. Here h is the number
of training objects of interest. If the relative difference between
the 3D bounding box of the j-th point cluster and the 3D bounding
box of a training object is small, the point cluster is considered as a
t colors indicate different tiles. (For interpretation of the references to color in this



Fig. 4. Octree based space partition and its hierarchical data structure. (a) Octree based Cartesian space subdivision and voxel indexing. (b) Octree hierarchical data structure.
The octant numbered 055 in the top left of (a) indicates where in the hierarchy as in (b) this voxel can be found.
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candidate of the j-th object. The relative difference Di;j between
two 3D bounding boxes is computed by Eq. (1).

Di;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðCiÞ � BðT jÞ

��� ���
BðT jÞ

��� ���
vuuut ði ¼ 1;2; . . . ; k; j ¼ 1;2; . . . ;hÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½BðCiÞx � BðT jÞx�

2 þ ½BðCiÞy � BðT jÞy�
2 þ ½BðCiÞz � BðT jÞz�

2

½BðT jÞx�
2 þ ½BðT jÞy�

2 þ ½BðT jÞz�
2

vuuut
ð1Þ

Here, BðCiÞ and BðT jÞ are the 3D bounding boxes of a candidate clus-
ter and a training object respectively. Suppose there are k candidate
clusters and h training clusters. Bx, By and Bz are the sizes of the
bounding box in the three coordinate directions. When Di;j is smal-
ler than a preset threshold, then a point cluster is regarded as a can-

didate of the j-th training object CðT jÞ. Due to possible variations in
the orientation of the roadside object, the orientation of bounding
box will vary as well. Thus, the threshold used here for candidate
object selection needs to be big enough to avoid omission.

3.4. SigVox descriptor construction

In this section, the approach for determining the dimensionality
of a voxel is given. Consecutively, the concept of the 3D SigVox
descriptor and the methodology to construct SigVox descriptors
is presented.

3.4.1. Dimensionality analysis
Non-ground objects were clustered as voxel clusters in Sec-

tion 3.2. Consecutively the dimensionality of each voxel in these
clusters is determined by PCA. The dimension of a voxel is deter-
mined as follows: Suppose pi ¼ ðxi yi ziÞT are the coordinates
of a point pi inside the voxel cell, then the center of gravity p of
all the points pi inside the voxel is determined by Formula 2.

p ¼ 1
n

Xn

i¼1

pi ð2Þ

Here n is the number of points inside the voxel. The 3D structure
tensor M of the points is defined by Formula 3.

M ¼ 1
n
QTQ ð3Þ

Here Q ¼ ðp1 � p;p2 � p; . . . ;pn � pÞT . M is a symmetric matrix and
can be decomposed as M ¼ RIRT . Here R is a rotation matrix and I
a diagonal positive definite matrix. The elements of I are the eigen-
values of matrix M. The three eigenvalues are positive, are denoted
by k1, k2, k3, and are sorted such that k1 > k2 > k3. The correspond-
ing eigenvectors are v1, v2, v3 respectively.

In this work, voxel cells are categorized into three types: linear,
planar and scatter. The three cases are defined as follows: (i) If for
the eigenvalues of a voxel it holds that k1 � k2, then this voxel is
defined as a linear, or 1D voxel cell. For a linear voxel cell, eigen-
vector v1, which corresponds to eigenvalue k1, is the significant
eigenvector and indicates the dominant direction of the points
inside the voxel cell. (ii) If k2 � k3, then the voxel cell is defined
as a planar, or 2D cell. In this case eigenvector v3, the normal vector
of the plane, is the significant eigenvector. (iii) If k1 � k2 � k3, then
this cell is defined as a scatter cell, or 3D cell. A scatter cell does not
have a dominant direction and will not be considered. Here
�means much larger and is implemented by a preset threshold.
In this work, the linearity is examined first and then planarity.
The thresholds for linearity and planarity are denoted by Tl and
Tp respectively. After this procedure, all voxel cells in a cluster have
a geometric flag denoting its dimensionality and if applicable, a
significant eigenvalue and eigenvector as its properties.
3.4.2. EGI descriptor
In this section, the approach to construct the proposed SigVox

3D descriptor for both training objects and candidate voxel clusters
is demonstrated. The SigVox descriptor is inspired by the existing
EGI descriptor, proposed by Horn Horn (1984). The EGI descriptor
in this work is approximated by an icosahedron. Rather than com-
puting local normals from a query point with a radius as in Horn
(1984), the significant eigenvectors obtained in Section 3.4.1 are
used to construct a 3D EGI descriptor (Wang et al., 2016). An
approximated sphere, i.e. an icosahedron in this work, is used to
assign significant eigenvectors to its surface and is also defined
as the Eigen-Sphere of a voxel cluster.

The full sphere is approximated by an icosahedron. As illus-
trated in Fig. 5, the relative position of the icosahedron with regard
to the Cartesian coordinate axes is given by its standard position in
this work. In Fig. 5, point O is the origin of the coordinate system
and the geometric center of the icosahedron. The X axis intersects
one icosahedron edge at point Pm and the Y axis penetrates trough
one triangle patch at point Qm, while the Z axis passes through ver-
tex u. This is an uniform icosahedron, as the distances of its 12 ver-
tices to the origin O are equal to 1.

The next procedure is to assign the obtained significant eigen-
vectors of all voxels in a cluster to the triangles on the boundary
of the icosahedron. In Fig. 6, triangle uae is one of the 20 boundary



Fig. 5. A uniform icosahedron used to construct the EGI descriptor. Such icosahe-
dron provides a coarse sphere approximation. Fig. 6. Assign a significant eigenvector v

!
to a triangle aeu on the boundary of the

icosahedron.
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triangles of the icosahedron in Fig. 5. Vector v
!

intersects triangle
uae at point P. Suppose the three vertices correspond to vectors

vn
!
, va

!
, ve

!
respectively, then the coefficients kn, ka, ke in the linear

combination in Eq. (4) must be all positive (Preparata and
Shamos, 1985). This is used to assign significant eigenvectors to
the correct triangle.

v
! ¼ kn vu

! þka va
! þke ve

! ð4Þ
Indeed, to determine the coefficients in Eq. (4), the function can be
decomposed and rewritten to Eq. (5).

kn
ka
ke

0B@
1CA ¼ vu

! va
! ve

!ð Þ�1 �
vx

vy

vz

0B@
1CA ð5Þ

Here vn
! ¼ ðxn; yn; znÞT are the coordinates of vertex vn and vx;vy; vz

are the coordinates of vector v
!
.

The 3D EGI descriptor of the candidate cluster is constructed by
assigning the significant eigenvectors of all voxels in the cluster to
its Eigen-Sphere by determining for each eigenvector which trian-
gle of the icosahedron it intersects using Eq. (5). This means that
only the voxel eigenvector corresponding to the biggest eigenvalue
is assigned for a linear voxel, while for a planar voxel, only its nor-
mal vector is assigned. Note that the eigenvectors obtained by PCA

are not direction definite, e.g. vector v
!
and its antipodal vector �v!

are both applicable. In this work, for the purpose of symmetrical
concern, both a vector and its antipodal vector are assigned to
the Eigen-Sphere.

For each significant eigenvector assigned to a particular triangle,

a weight value Wk is stored, indicating the percentage of points it

contains of the cluster it is from. That is, the weight Wk of a signif-
icant voxel contributing to the i-th triangle, is computed by Eq. (6).

Wk ¼ Nk

N
ð6Þ

Here Nk is the number of points in the considered voxel while N is
the total number of points in the cluster.

The aim of the weights is to avoid ambiguity in dimensionality
determination in Section 3.4.1. Division of the point cluster of an
object using an octree will separate different parts of the object
in a somewhat arbitrary way, depending on the particular orienta-
tion of the object. For example, a voxel that contains only one bor-
der of a plane will appear linear. Such voxels will lead to ambiguity
in the dimensionality as a whole. The weight will take the number
of points in the voxels into consideration. This weight is therefore
designed to reduce the sketched ambiguity.

3.4.3. SigVox descriptor
In this work, a significant eigenvector based shape descriptor

using multiple levels of voxel is proposed, which is denoted by Sig-
Vox. SigVox is constructed based on the recursive subdivision of
each candidate point cluster using the octree. At each level of sub-
division, the geometric dimensionality feature of each voxel cell is
computed as described in Section 3.4.1 and their significant eigen-
vectors are obtained.

Fig. 7a shows a typical type of street lamp in this study. Fig. 7b
is the corresponding point cloud of the pole and its original octree
octant, which is also the root node of the octree.

Fig. 8 demonstrates the recursive subdivision of the street lamp
pole by an octree at four levels and the corresponding Eigen-
Spheres. In each sub-figure, the left figure denotes the subdivision
of the point cluster while the right figure is the corresponding
EGI descriptor represented by an Eigen-Sphere. In the sub-figures,
linear, planar and scatter voxels are denoted in red, green and blue
respectively. The triangles of the icosahedron at each subdivision
level are colored according to the number of collected significant
eigenvectors. The number of voxels at the four subdivision levels
are 6, 10, 18 and 36 respectively. The number of significant voxels
is 5, 8, 16 and 33 respectively. For example, in Fig. 8b the subdivi-
sion is at level 2 and there are 10 voxels. The two blue voxels are
scatter voxels. Thus there are 10� 2 ¼ 8 significant voxels and
their eigenvectors are assigned to the three red and green triangles
of the icosahedron.

For each candidate point cluster, their SigVox is defined as an
ordered series of significant eigenvector based EGI at different
levels of subdivision, as given by Formula 7.

SigVox ¼ E1; E2; . . . ; Enf g ð7Þ
Here, E1, E2, En are the corresponding EGI descriptors at level 1, 2
and n.

In this work, the similarity between each candidate point seg-
ment and its corresponding template segment will be determined



Fig. 7. A street lamp pole and its point cloud. (a) A typical street lamp. (b) Point
cloud of the lamp pole and its original octree octant.
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by comparing the distance between their SigVox descriptors for a
preset number of levels.
3.5. Descriptor matching

This section will first introduce the distance between a pair of
SigVox descriptors of two point clusters. The second part describes
the transformation method that is used to evaluate the similarity
between two EGI descriptors, i.e. the similarity at a fixed scale.
Fig. 8. Recursively subdividing a lamp pole at four levels by an octree and the correspond
at level 3. (d) Subdivision at level 4. In the different subdivisions, red, green and blue oct
references to color in this figure legend, the reader is referred to the web version of thi
3.5.1. Distance between SigVox descriptors
The distance between the SigVox descriptors of candidate point

clusters and template clusters is determined by accumulating the
difference between the assigned vectors and their weights for each
EGI triangle at each recursive subdivision level. An icosahedron has
a total of 60 symmetry transformations (Conway et al., 2008). Since
both the significant vector and their antipodal vector are assigned
to the icosahedron surface, only 30 symmetries have to be consid-
ered in practice.

SupposePc andPt denote a candidatepoint cluster anda template

cluster respectively. LetEl
c andEt

s denote their EGIdescriptor at level l
respectively. Their similarity at level l is defined by Formula 8

Sc;tl ¼ min bSc;t
l

n o
j
ðj ¼ 1;2; . . . ;30Þ

¼ min
X20
i¼1

ðNi;l
vec;c 	Wi;l

c � Ni;l
vec;t 	Wi;l

t Þ
2

( )
j

ð8Þ

Here, Sc;tl denotes the similarity between point cluster Pc and tem-
plate cluster Pt at level l. This final similarity is the best match

among a total of 30 comparisons. That is, each bSc;t
l gives the similar-

ity for one among a total of 30 similarity transformations of the

icosahedron. Ni;l
vec;c and Ni;l

vec;t are the number of eigenvectors that
intersect the i-th triangle of the EGI from Pc and Pt at level l respec-

tively.Wi;l
c andWi;l

t are the weights of the i-th triangle from Pc and Pc

at level l. Here j denotes the j-th symmetry of the icosahedron. The
similarity is defined by the minimum distance of the similarity
among all 30 icosahedron similarities.

The multiple scale distance between a pair consisting of a point
cluster Pc and template cluster Pt is simply the sum of the similar-
ities at all subdivision levels, as denoted by Formula 9.
ing Eigen-Shpere. (a) Subdivision at level 1. (b) Subdivision at level 2. (c) Subdivision
ants indicate linear, planar and scatter voxels respectively. (For interpretation of the
s article.)



Fig. 9. Relative transformation of the Ec
l with regard to Et

l . This figure indicates how
a candidate cluster is rotated to match a training object.
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Sc;t ¼
Xn
l¼1

Sc;tl ð9Þ

Here Sc;t is the distance between the SigVox descriptors of point
cluster Pc and template cluster Pt . The preset maximum subdivision
level is denoted by n.

3.5.2. Transformation of Eigen-Spheres
While determining the similarity between two Eigen-Spheres

descriptors of the same level, i.e. the bSc;t
l in Formula 8 in Sec-

tion 3.5.1, the Eigen-Sphere of a candidate is transformed 30 times
corresponding to the 30 symmetries of the icosahedron up to
antipodal identification. The transformation is performed as
described in Algorithm 1.

Algorithm 1. Algorithm for relatively transform the two Eigen-
Spheres to determine similarity at subdivision level l.

Input: A pair of Eigen-Spheres, i.e. Ecl and Etl .

Output: Similarity value at level l, i.e. bSc;tl .

1:
 function COMPUTESIMILARITY
2:
 Place Ecl and Etl in the standard position;

3:
 for m = 0? 5 do

4:
 for n = 0? 4 do

5:
 Determine the (m⁄5 + n)-th bSc;tl

6:
 Rotate Ecl about Z axis with 2p

5 rad;

7:
 end for

8:
 m =m + 1;

9:
 Determine spherical coordinates of the m-th vertex

of Ecl , (1,hm;um);

10:
 Rotate the Ecl about axis Z with 90� hm degree;

11:
 Rotate the Ecl about axis X with u degree;

12:
 end for

13:
 Return the minimum one among the obtained 30 bSc;tl ;

14:
 end function
c t
In Algorithm 1, the input is a pair of Eigen-Spheres, i.e. El and El

respectively. In this step, the Eigen-Sphere of template cluster,
denoted by Et

l , is kept stationary and only Ec
l , which is the EGI of

the candidate point cluster is transformed. The algorithm first puts
the two Eigen-Spheres in standard position as given in Fig. 5. Note
that Vertex u is at the positive direction of Z axis when the Eigen-
Sphere is in standard position. Then the Ec

l is rotated consecutively

for five times around Z axis by 2p
5 rad to compute the first 5 bSc;t

l . The
direction of rotation is performed in a right-handed manner as
demonstrated in Fig. 9. This five values correspond to the five sym-
metries when Vertex u is at the north pole. The next step is to com-
pute the five similarity values when the next vertex is at north pole
position. To transform an arbitrary vertex to the north pole, for
example Vertex b. First the spherical coordinates are computed,
i.e. ð1; hb;/bÞ, as shown in Fig. 9. Next the Ec

l is first rotated around
axis Z by h0b ¼ 90� hb degree and then rotated around X axis by /b

degree. Subsequently Vertex b is transformed to the positive Z axis.
When the next vertex is transformed to the positive Z axis, the 5
similarity values are computed. The algorithm runs until all the

30 bSc;t
l corresponding to the 30 symmetries are all determined.

Then the minimum one is obtained and returned as the similarity
value of the pair of EGI descriptors and returned.

Many objects have a dominant geometric dimensionality. For
example, poles are dominantly linear. For such objects, a local
coordinate frame could be acquired by PCA, by aligning the object
along the first eigenvector. In this way, the number of symmetries
to be considered in the similarity determination can be signifi-
cantly reduced. Note that in case that object has no dominant
dimensionality, this possible refinement is not implemented in this
work.
3.5.3. Object recognition
This section describes the strategy of assigning the obtained

candidate point clusters Ci
n o

, i ¼ 1;2; . . . ; k to a specific kind of tar-

get object, which is represented by T j
n o

, j ¼ 1;2; . . . ;h.

For a specific object of interest, i.e. T j
n o

, its candidate point

clusters are first obtained as described in Section 3.2. Then the

obtained candidate point clusters, i.e. Ci
n o

, are subdivided by an

octree into several levels. The SigVox descriptors corresponding
to those levels is constructed. Next the similarity between the
MS-EGI descriptors of an object of interest and candidate point
clusters are determined.

To determine whether a candidate point cluster should be
assigned to a specific object of interest, a preset similarity thresh-
old is used. If the determined similarity between two SigVox
descriptors, which is denoted be Sc;t in Formula 9, is below the
threshold and this similarity is minimal among different training
objects, then the point cluster is assigned to the object of interest.
Finally all those point clusters are exported separately.
3.6. Evaluation of the similarity

The quality of the object recognition method proposed in this
work is evaluated in two ways. First, a similarity score will be
determined by the similarity matching of each pair of SigVox
descriptors. The similarity score denotes how confident a recogni-
tion is. The second way to evaluate the quality of object recognition
is in situ inspection of the results. Finally the results are summa-
rized in a confusion matrix where identification results are com-
pared to ground truth.

The similarity score is computed after the similarity of the Sig-
Vox descriptors between all the candidate point clusters and a
training cluster are determined. In this procedure, a confidence
value will be computed that expresses the quality of the object
recognition.

Suppose there are n levels of subdivision for a pair of SigVox
descriptors. Then there are n preset thresholds. If among all those
n levels of similarity, i.e. n pairs of Eigen-Spheres, there are m pairs



Fig. 10. Drive-Map MLS system from Fugro. (a) A side view of the MLS system. (b) A view of the sensor configuration. This systemwas used to acquire the point clouds used in
this work.

Table 2
Specification of the Drive-Map mobile laser
scanning system.

Laser pulse rate 1,333,000 p/s
Ranging accuracy <2 cm
Maximum range 100 m
Scanner Riegl VQ 250
Swath angle 360�
Panoramic camera Ladybug 3
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within the threshold, then this candidate point cluster will have a
similarity score F ¼ m

n . For example, suppose a point cluster is sub-
divided by an octree into 4 levels, then its SigVox descriptor con-
sists of four EGI descriptors, one for each scale. When comparing
the SigVox descriptors of the point cluster and its template point
cluster, if 3 of them are within the thresholds, then its matching
score is 0.75.
4. Results and evaluation

In this section, the proposed method is tested and validated on
two MLS point clouds sampling a stretch of 4 km of urban road.
First, a brief introduction of the used MLS system and a description
Fig. 11. Overview of the scanning trajectory and point cloud. (a) Top view of the scan
of the used point cloud data is given. Then, the results on one of the
test runs from each processing step, including pre-processing, vox-
elization and clustering, and object recognition, are presented and
discussed. Next, the results from processing the second test run are
presented. This second run samples the same road environment,
but the data was acquired in opposite driving direction. This sec-
ond run data was processed using the same settings. The recogni-
tion results from the two point clouds were compared and
analyzed. Finally, the recognition accuracy of the proposed method
was evaluated against manual in situ inspection results.
4.1. Data description

The point clouds tested in this work are acquired on March 22,
2016, by the Fugro Drive-Map MLS system, which is shown in
Fig. 10. Fig. 10a shows the MLS system as a whole while Fig. 10b
is a close up view of the sensors. The specifications of the MLS sys-
tem are given in Table 2.

The point clouds acquired by the MLS system obtained in two
opposite directions have an average point density of 1500
points per square meter. The point clouds cover a stretch of
approximately 4 km of urban road. The number of points are
72,165,310 and 68,228,118 respectively. The MLS trajectory and
the first point cloud are illustrated in Fig. 11. In Fig. 11a, the
ning trajectory of 4 km long. (b) Original point cloud colorized by relative height.



Fig. 12. Re-tiling and non-ground point separation results of the first point cloud.

Table 3
Parameters and thresholds used in the processing of the two point clouds.

Parameter Value

Tiling Width 20 (m)
Length 200(m)
Overlap 5 (m)

Voxelization level 9

Dimensionality Linearity (Tl) 10
Planarity (Tp) 20

Bounding box (Di;j) 5.0(%)

SigVox Level 4
Similarity (Sc;t) 3.0
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red1 line indicates the trajectory of the MLS system during the first
acquisition. Fig. 11b denotes the original point cloud of the first
acquisition colored by height.

The parameters and thresholds used in the tests are given in
Table 3. Note that there are three parameters in the Tiling step.
The width indicates the distance across trajectory boundary of
the tiles, length indicates the distance along trajectory and overlap
is the size of the buffer area between two consecutive tiles. The
Voxelization level gives the maximum subdivision level of the
octree. Dimensionality consists of linearity and planarity, which
have dominant direction as described in Section 3.4.1. The SigVox
3D descriptor has two parameters: level indicates the number of
scales, while similarity gives the threshold distance used to accept
a candidate object as matching a training object.
(a) The point cloud was divided in 20 tiles and one tile contains approximately 4
million points. (b) Separation results: ground points are plotted in blue, and non-
ground points in red. During the tiling points further than 20 m from the trajectory
are removed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 4
Number of points after each pre-processing step.

Point
cloud

Original After
retiling

Ground
points

Non-ground
points

1st Run 72,165,310 33,339,127 18,562,951 14,776,176
2nd Run 68,228,118 31,060,145 16,288,775 14,771,370
4.2. Pre-processing of the point cloud

As the original point clouds are too large to process on a normal
desktop PC and points further away from the scanning trajectory
are less interesting in this study, the original point clouds are
divided into smaller tiles. In the re-tiling step, points that are fur-
ther than 20 m from the trajectory are removed. The length along
the trajectory is 200 m for each tile with an overlap of 5 m between
consecutive tiles. After re-tiling, ground and non-ground points are
separated. The results of the re-tiling and separation of ground and
non-ground points are given in Fig. 12.

Fig. 12a shows the bounding box of each of the 20 newly gener-
ated smaller tiles. As shown in this figure, each tile is labeled by a
unique tile index. Fig. 12b shows the separation results of the 20
tiles, in which the blue and red points denote the separated ground
and non-ground points respectively. Table 4 gives the number of
points corresponding to each pre-processing step for both data
sets. As can be noticed 33,339,127 points are left after re-tiling
the first point cloud. Consecutive segmentation results in
18,562,951 ground and 14,776,176 non-ground points
respectively.

After the pre-processing of the original point clouds, non-
ground points are used as input for the next step, i.e. voxelization
and connected component clustering.
4.3. Voxelization and clustering of non-ground points

The non-ground points of each tile are organized in an octree
data structure. This section describes the results of the voxelization
and clustering of the non-ground points.
1 For interpretation of color in Fig. 11, the reader is referred to the web version of
this article.
The voxelization of the non-ground points is conducted recur-
sively in each tile, as described in Section 3.2. In this work, the
criterion to stop subdivision is the minimum voxel size. The
recursive subdivision of the octants in the octree is terminated
whenever the voxel size is smaller than 10 cm. After voxelization,
connected voxels are clustered. Consecutively, the points
inside the voxels of a cluster are extracted to form a point cluster.
Next, for each obtained point cluster, its 3D bounding box is
obtained.

Fig. 13 shows the results of voxelization and clustering of the
non-ground points from tile 3 in Fig. 12a. Fig. 13a shows the
non-ground points colorized by height. Fig. 13b demonstrates
an octree subdivision at level 9 corresponding to voxels of
39.4 cm. Fig. 13c illustrates the results of clustering connected
voxels. The clusters are colorized by random colors. Also, the
points inside the voxels of each cluster are extracted to
form corresponding point clusters. The 3D bounding boxes of
those extracted point clusters are given in Fig. 13d. Those 3D
bounding boxes will be used to select candidate point
clusters from a selected object of interest, as described in
Section 3.2.



Fig. 13. Results of voxelization and clustering of a tile of non-ground points. (a) Original non-ground points of tile 3. (b) Voxelization results of the non-ground points. (c) The
connected voxels are clustered. (d) 3D bounding boxes of the considered point clusters. The resulting clusters are compared with the training objects, provided their bounding
boxes do not deviate too much.

Fig. 14. Images and point clouds of the selected objects of interest. (a)–(f) are photos and points of six lamp poles, while (g)–(j) are the considered traffic signs and their
corresponding point clusters. The image shows that not all objects are sampled equally well by the MLS.
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Table 5
Dimensions of the 3D bounding boxes of the objects of interest.These dimensions are
used to select candidate objects which speeds up processing.

Object Bounding box (m)

Length Width Height

Pole 1 1.6 0.4 8.7
Pole 2 1.2 0.8 7.7
Pole 3 3.5 0.5 7.5
Pole 4 1.9 0.5 9.6
Pole 5 0.7 0.3 3.4
Pole 6 3.4 0.4 9.7
Sign 1 0.9 0.1 2.9
Sign 2 0.4 0.2 1.2
Sign 3 0.6 0.2 2.5
Sign 4 0.7 0.2 3.1
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4.4. Object recognition

Results of object recognition are presented in this section. In
this work, 6 different street lamp poles and 4 different traffic signs
were selected as objects of interest. Points corresponding to
example objects were manually extracted as template point clus-
ters and object recognition was conducted on the rest of the point
cloud. Fig. 14 illustrates the selected objects. In the figure, the top
row are photos of the selected street lap poles and their sampled
point clusters, while the bottom row shows the considered road
signs and their corresponding point clusters.

After importing the point clusters of the selected objects of
interest, their 3D bounding boxes are obtained, as given in Table 5.
Then, for candidate object selection, the 3D bounding box of each
Fig. 15. The voxel subdivision and the correspondent SigVox 3D feature descriptor of Pol
descriptor of pole 2 at level 1, 2, 3 and 4. (e)–(h) are the voxel subdivision and SigVox fea
the linearity, planarity and scatter of the points inside each voxel. (For interpretation of th
this article.)
object of interest is compared with that of the voxel clusters
obtained in Section 4.3. In this work, the threshold for the simi-
larity of 3D bounding boxes (Di;j) is set to 5.0%. Take Pole 2 and
Pole 4 in Fig. 14 for example, the distance of their bounding boxes
calculated from Eq. (1) is 4.4%. Thus, not only the poles of type
Pole 2 in the test data will be selected as candidates, but also
the poles of type Pole 4. In point cloud of the first run, there
are 37 and 5 poles of type Pole 2 and Pole 4 are obtained as can-
didates of Pole 2.

In the next step, the SigVox 3D descriptors of Pole 2 and all the
42 selected candidate point clusters will be compared. Fig. 15
shows the subdivision at 4 levels of Pole 2 and Pole 4 and the cor-
responding SigVox descriptors. Next, the similarity distances of
between SigVox descriptors of the training point cluster of Pole 2
and the obtained 42 candidates are determined. The resulting sim-
ilarity distances for each of the 4 subdivision levels are shown in
Fig. 16. The histograms show that there is a clear difference
between the similarity distance Pole 2 and Pole 4. In this work,
the similarity distance threshold is set to 3.0. Thus only candidates
that have a similarity distance below 3.0 will be assigned to type
Pole 2. In the point cloud of the first run, 37 poles of type Pole 2
are correctly identified. This procedure is performed for all selected
objects of interest.

For better visualization, the object recognition results are pre-
sented in two figures: Figs. 17 and 18. The object recognition
results of the north part of the study area from the first point cloud
are given in Fig. 17. In Fig. 17a, the green icons denote the correctly
recognized objects. The red icons depict items that are not cor-
rectly identified. In Fig. 17b, ground points are colored light blue
and non-ground points gray. The successfully recognized objects
are colored in correspondence to Fig. 14. Fig. 17b shows a scenario
e 2 and Pole 4of the four levels. (a)–(d) are the voxel subdivision and SigVox feature
ture descriptor of Pole 4 at level 1, 2, 3 and 4. The red, green and blue voxel indicate
e references to color in this figure legend, the reader is referred to the web version of



Fig. 16. Similarity distances of the SigVox descriptor between template Pole 2 to the obtained 42 candidates at 4 levels of subdivision. The red dash line in each subfigure
denotes the threshold of similarity distance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that has three lamp poles of type Pole 1 in Fig. 14. The proposed
method identified two of them. The pole in black was missed
because it is close to a bus stop. Therefore its points were in a clus-
ter together with the bus stop points. As a result, the bounding box
of this cluster was too far away from the bounding boxes of the
training objects. Two road signs, of type Sign 3 and Sign 4 in
Fig. 14, which are highlighted by rectangles, are correctly recog-
nized in Fig. 17b. Fig. 17c shows a scenario where seven lamp poles
of type Pole 1 and four road signs of type Sign 3 and Sign 4were cor-
rectly recognized. In Fig. 17d, there are actually four lamp poles of
type Pole 4. However, one lamp pole, the black one, was not recog-
nized because it is connected with the overhead roadside tree and
was therefore not selected as candidate. In Fig. 17e, four street
lamps of type Pole 4 and 5 road signs of type Sign 2 and Sign 3 were
all correctly recognized.

Fig. 18 shows the recognition results from the south part of the
study area. Fig. 18a is a top view of the area. Fig. 18b is a zoom in of
Zone E in Fig. 18a. Three poles of type Pole 4 and Pole 5 were suc-
cessfully recognized. Also, two road signs of type Sign 1 and one
road sign of type Sign 3 were correctly identified. However, one
road sign of type Sign 1 was not identified. This is because as a
result of occlusion, only part of its shape is represented by the
available points. In Fig. 18c two lamp poles of type Pole 3 and Pole
4 were successfully identified. Four road signs of type Sign 3 were
correctly recognized. Also one sign of type Sign 1 and one of type
Sign 2 were identified successfully.

4.5. Evaluation of object recognition results

To validate the reliability and accuracy of the proposed road
object recognition method, a second point cloud of the same area
was collected, but from an opposite driving direction. This point
cloud was processed by the same work flow. The ground truth of
the street lamp poles and road signs was also collected by visual
in situ inspection. The recognition results of the second point cloud
and ground truth of the road objects are given in Table 6.

As illustrated in Table 6, 123 and 125 from a total of 130 street
lamp poles are correctly recognized in the two point clouds. Thus
the accuracy of street lamp poles recognition rates are 94% and
96% for the first and the second point cloud. There are 47 and 48
road signs correctly recognized from a total of 51 road signs. There-
fore the accuracy of road sign recognition for the two point clouds
is 92% and 94%. The overall accuracy of the road structure recogni-
tion are 94% and 96% for the two point clouds.



Fig. 17. Street object recognition results from the north part of the study area. Different icons indicate different lamp pole and traffic sign types. Successfully identified objects
are indicated in green, missed objects are colored red. (a) Overall results of the recognition. (b) Zoomed in view of area A. (c) Zoomed in view of area B. (c) Zoomed in view of
area C. (d) Zoomed in view of area D. Each object type is colored in a different color. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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There are a few cases where poles are correctly identified in the
point cloud of the first run, but missed in the second run. These
inconsistencies are caused either by occlusions, or by a too large
distance of an object to the scanning trajectory. These factors result
in incomplete sampling of the objects and resulting in deviating 3D
bounding box sized. As a result their clusters were not selected as a
candidate object. An example is the road sign of type Sign 1 in
Fig. 18b. However, if the full shape of an object is sampled, still
the object can be successfully identified even if there exists a big
difference in point density. Notably, the proposed method is able
to identify poles sampled at different point density. Fig. 19a shows
the lamp pole denoted by the red arrow in Fig. 17a. As the dis-
tances of the pole to the scanning trajectory are different, the sam-
pled point density is different as well. Figs. 19b and c are the point
clouds of the pole sampled from two opposite driving directions,
consisting of 954 and 273 points respectively. There is a big differ-
ence in point density at the top of the pole as indicated in the fig-
ures. Still, the pole was correctly recognized in both point clouds.

Recognition may fail if an object is too close to another object.
For example, Fig. 20 shows a scenario where a lamp pole is
connected to a road side tree. As a consequence the lamp pole is
not separated in the clustering step. Subsequently it was not



Fig. 18. Street object recognition results from the south part of the study area. (a) Overall results of the recognition in the south part of the study area. (b) Zoomed in view of
area E. (c) Zoomed in view of area F. The red ellipse indicates a street sign that was not detected by the workflow. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 6
Results of road object recognition from the two point clouds and in situ inspected ground truth.

Object Pole 1 1st Point cloud 2nd Point cloud Ground truth Ground truth total

Street lamp pole Pole 1 56 56 58 130
Pole 2 37 39 41
Pole 3 12 12 12
Pole 4 5 5 5
Pole 5 9 9 9
Pole 6 4 4 4

Road sign Sign 1 6 5 7 51
Sign 2 10 9 10
Sign 3 15 16 16
Sign 4 16 18 18

Object total 170 173 181 181
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considered in the candidate selection step and finally not recog-
nized. Further work should consider the separation of apparent
connected objects.
5. Discussion and conclusions

5.1. Discussion

In this section, the sensitivity analysis of the used parameters is
firstly given. Then, future work on some aspects of the proposed
method are discussed.
5.1.1. Sensitivity analysis
The parameters used in this work are given in Table 3. This sec-

tion gives a short analysis of the influence of the parameters to the
results.

1. Voxelization level. The level of voxelization corresponds to the
size of the voxels, the deeper the level, the smaller the voxel
size. The parameter should be set considering the minimum
distance between objects of interest and the surroundings, as
well as the average point density.

2. Dimensionality. The linearity and planarity thresholds will
define the dimensionality of a voxel using PCA. The smaller



Fig. 19. A lamp pole of type Pole 4 represented in two point clouds obtained from
opposite driving directions. (a) A photo of the pole. (b) Points from the first point
cloud. (c) Points from the second point cloud. In the second run, the pole was
sampled by 273 points compared to 954 points in the first run, which strongly
affects the local point density as visible in the area marked by the ellipse.

Fig. 20. A scenario where a lamp pole was not identified. Because the tree and the
pole are too close, they are clustered together, which negatively effects the shape
encoding. (a) A lamp pole connected to a road side tree. (b) Point cloud of the lamp
pole and the tree.
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the thresholds, the more significant voxels will contribute their
eigenvectors to the SigVox descriptor. The optimal thresholds
should also consider the noise level of the point clouds.

3. Bounding box. This parameter is used to remove point clusters
that have a deviating 3D bounding box compared to those of the
training objects at an early stage. This avoids considering all the
obtained point clusters and speeds up the processing. However,
a too small bounding box buffer will cause omissions.

4. SigVox. The number of required levels of the SigVox descriptor
depends on the complexity of the geometric shape of the
selected objects of interest. A too small number of levels will
result in robustness issues. The similarity distance threshold
depends on the similarity of the considered objects. Smaller
thresholds may leads to omissions in the recognition results.

5.1.2. Future work
Still some aspects of the presented method should either be fur-

ther considered or improved.

1. Object separation. As the results in Section 4.4 shows, objects
were unsuccessfully recognized because of their proximity to
other objects. To enhance performance, separation of objects
of interest needs to be further improved.

2. Candidate selection. In this work, candidate point clusters are
selected by comparing their 3D bounding boxes with the 3D
bounding boxes of the example objects of interest. However,
there may be situations in which poles are inclined. Such cases
are notably interesting for street inventory management. Prob-
ably the method proposed in this work will not identify inclined
street poles, because of the initial bounding box selection step.

3. Approximation of EGI. The EGI descriptor is approximated by an
icosahedron, which has 20 boundary triangles. If the shape of an
object is extremely complicated, the icosahedron may not be
sufficient for representing the shape of the object. However,
the icosahedron can be further tessellated by incrementally
subdividing one triangle into four smaller triangles until the
approximation meets the requirement.

4. Threshold selection. The used parameters are mainly set with
regard to the experimental results in this work. A next work
should consider automatic threshold selection.

5.2. Conclusions

In this work, an automatic method for roadside furniture iden-
tification is proposed and validated. The method consists of four
steps, i.e. pre-processing, voxelization and SigVox descriptor con-
struction, template matching, and result validation. The proposed
method was tested on two point clouds sampling the same stretch
of 4 km of urban road obtained by aMLS system driving in opposite
direction. In this study, 6 different types of street lamp poles and 4
types of road signs were selected as objects of interest and the Sig-
Vox descriptor of those objects were constructed as template
objects. The recognition was performed by computing the distance
between the SigVox descriptors of template objects and candidate
point clusters. The recognition results of the two point clouds were
compared to ground truth data of the street objects obtained by
in situ visual inspection. The comparison results show that the
overall accuracy of road structure recognition is 94% and 96% for
the two point clouds. To the best of our knowledge, this is the first
time that a shape descriptor, describing complete objects are used
to efficiently extract repetitive objects in large point cloud scenes.
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